52 Card Deck

Algebra -> Surface-area-> SOLUTION: In a standard deck of 52 playing cards, what is the probability of drawing an odd number? please help me..... Log On
  1. How Many Clubs In A 52 Card Deck
  2. 52 Card Deck

Card decks and magic tricks I farkin love this place can I say that lol just recently discovered 52 kards during lockdown and so my deck collection begins can't nthink of a better way to spend time working on card magic and cardistry oh and got a cool 52kards sticker to pimp out my steamer trunks. Curated playing cards and magic tricks Shop for all the best brands under one roof Worldwide delivery.

52 Card Deck52 Card Deck

Question 227647: In a standard deck of 52 playing cards, what is the probability of drawing an odd number?
please help me.....

Answer by drj(1380) (Show Source):
You can put this solution on YOUR website!
In a standard deck of 52 playing cards, what is the probability of drawing an odd number?
Step 1. Assume we don't count the face cards as either odd or even.
Step 2. There are a total of 20 odd numbers (5 odd numbers per suit)or 20 possible outcomes out of the 52 cards.
Step 3. Then the .
Step 4. ANSWER: The probability of drawing an odd number is .
Note if we count the face cards as odd (Jack and King) then there are eight more outcomes or now a total of 28 outcomes out of 52. Then, the probability of drawing an odd number increases as .
Then, for even numbers and counting the face cards (Queen) we have four more outcomes to add to the 20 even numbers or the probability drawing an even number is . Slightly lower probability when compared to the odd numbers.
I hope the above steps were helpful.
For FREE Step-By-Step videos in Introduction to Algebra, please visit http://www.FreedomUniversity.TV/courses/IntroAlgebra and for Trigonometry visit http://www.FreedomUniversity.TV/courses/Trigonometry.
And good luck in your studies!
Respectfully,
Dr J
http://www.FreedomUniversity.TV


It Starts with a Simple Deck of Playing Cards

They seem harmless enough, 52 thin slices of laminated cardboard with colorful designs printed on their sides. Yet, as another illustration of the mantra that complexity begins from the most simple systems, the number of variations that these 52 cards can produce is virtually endless. The richness of most playing card games owes itself to this fact.

Permute this!

The number of possible permutations of 52 cards is 52!. I think the exclamation mark was chosen as the symbol for the factorial operator to highlight the fact that this function produces surprisingly large numbers in a very short time. If you have an old school pocket calculator, the kind that maxes out at 99,999,999, an attempt to calculate the factorial of any number greater than 11 results only in the none too helpful value of 'Error'. So if 12! will break a typical calculator, how large is 52!?

52! is the number of different ways you can arrange a single deck of cards. You can visualize this by constructing a randomly generated shuffle of the deck. Start with all the cards in one pile. Randomly select one of the 52 cards to be in position 1. Next, randomly select one of the remaining 51 cards for position 2, then one of the remaining 50 for position 3, and so on. Hence, the total number of ways you could arrange the cards is 52 * 51 * 50 * ... * 3 * 2 * 1, or 52!. Here's what that looks like:

80658175170943878571660636856403766975289505440883277824000000000000

This number is beyond astronomically large. I say beyond astronomically large because most numbers that we already consider to be astronomically large are mere infinitesmal fractions of this number. So, just how large is it? Let's try to wrap our puny human brains around the magnitude of this number with a fun little theoretical exercise. Start a timer that will count down the number of seconds from 52! to 0. We're going to see how much fun we can have before the timer counts down all the way.

How Many Clubs In A 52 Card Deck

Shall we play a game?

Deck

Start by picking your favorite spot on the equator. You're going to walk around the world along the equator, but take a very leisurely pace of one step every billion years. The equatorial circumference of the Earth is 40,075,017 meters.Make sure to pack a deck of playing cards, so you can get in a few trillion hands of solitaire between steps. After you complete your round the world trip, remove one drop of water from the Pacific Ocean. Now do the same thing again: walk around the world at one billion years per step, removing one drop of water from the Pacific Ocean each time you circle the globe.The Pacific Ocean contains 707.6 million cubic kilometers of water.Continue until the ocean is empty. When it is, take one sheet of paper and place it flat on the ground. Now, fill the ocean back up and start the entire process all over again, adding a sheet of paper to the stack each time you’ve emptied the ocean.

Do this until the stack of paper reaches from the Earth to the Sun. Take a glance at the timer, you will see that the three left-most digits haven’t even changed. You still have 8.063e67 more seconds to go. 1 Astronomical Unit, the distance from the Earth to the Sun, is defined as 149,597,870.691 kilometers.So, take the stack of papers down and do it all over again. One thousand times more. Unfortunately, that still won’t do it. There are still more than 5.385e67 seconds remaining. You’re just about a third of the way done.

Decks

And you thought Sunday afternoons were boring

To pass the remaining time, start shuffling your deck of cards. Every billion years deal yourself a 5-card poker hand. Each time you get a royal flush, buy yourself a lottery ticket. A royal flush occurs in one out of every 649,740 hands.If that ticket wins the jackpot, throw a grain of sand into the Grand Canyon. Keep going and when you’ve filled up the canyon with sand, remove one ounce of rock from Mt. Everest. Now empty the canyon and start all over again. When you’ve levelled Mt. Everest, look at the timer, you still have 5.364e67 seconds remaining. Mt. Everest weighs about 357 trillion pounds.You barely made a dent. If you were to repeat this 255 times, you would still be looking at 3.024e64 seconds. The timer would finally reach zero sometime during your 256th attempt. Exercise for the reader: at what point exactly would the timer reach zero?

Back here on the ranch

52 Card Deck

Of course, in reality none of this could ever happen. Sorry to break it to you. The truth is, the Pacific Ocean will boil off as the Sun becomes a red giant before you could even take your fifth step in your first trek around the world. Somewhat more of an obstacle, however, is the fact that all the stars in the universe will eventually burn out leaving space a dark, ever-expanding void inhabited by a few scattered elementary particles drifting a tiny fraction of a degree above absolute zero. The exact details are still a bit fuzzy, but according to some reckonings of The Reckoning, all this could happen before you would've had a chance to reduce the vast Pacific by the amount of a few backyard swimming pools.